14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes

نویسندگان

  • Robin Beaven
  • Ricardo Nunes Bastos
  • Christos Spanos
  • Pierre Romé
  • C Fiona Cullen
  • Juri Rappsilber
  • Régis Giet
  • Gohta Goshima
  • Hiroyuki Ohkura
چکیده

The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in Drosophila melanogaster oocytes. A critical 14-3-3 target is the minus end-directed motor Ncd (human HSET; kinesin-14), which has well-documented roles in stabilizing a bipolar spindle in oocytes. Phospho docking by 14-3-3 inhibits the microtubule binding activity of the nonmotor Ncd tail. Further phosphorylation by Aurora B kinase can release Ncd from this inhibitory effect of 14-3-3. As Aurora B localizes to chromosomes and spindles, 14-3-3 facilitates specific association of Ncd with spindle microtubules by preventing Ncd from binding to nonspindle microtubules in oocytes. Therefore, 14-3-3 translates a spatial cue provided by Aurora B to target Ncd selectively to the spindle within the large volume of oocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spindle Dynamics during Meiosis in Drosophila Oocytes

Mature oocytes of Drosophila are arrested in metaphase of meiosis I. Upon activation by ovulation or fertilization, oocytes undergo a series of rapid changes that have not been directly visualized previously. We report here the use of the Nonclaret disjunctional (Ncd) microtubule motor protein fused to the green fluorescent protein (GFP) to monitor changes in the meiotic spindle of live oocytes...

متن کامل

Catch and release: 14-3-3 controls Ncd in meiotic spindles

During Drosophila melanogaster oogenesis, spindle assembly occurs without centrosomes and relies on signals from chromosomes. Beaven et al. (2017. J. Cell. Biol. https://doi.org/10.1083/jcb.201704120) show that 14-3-3 proteins bind and inhibit a key microtubule motor, Ncd, during oogenesis, but Aurora B releases Ncd inhibition near chromosomes, allowing Ncd to work in the right time and place.

متن کامل

Meiosis-Specific Stable Binding of Augmin to Acentrosomal Spindle Poles Promotes Biased Microtubule Assembly in Oocytes

In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which "amplifies" spindle microtubules by generating new microtubules along existing ones in mitosis. H...

متن کامل

P-121: Assessment of Microtubule and Nuclear Status at Different Intervals of Bovine In Vitro Oocyte Maturation

Background: Mammalian oocyte undergoes a series of structural nuclear modulations during maturation in order to obtain full competence to support fertilization and early embryonic development. Microtubules are major cytoskeleton components and have pivotal modulators for chromosomal movement, and it has been shown that partial or immature spindle organization may compromise correct ploidy of th...

متن کامل

Assembly pathway of the anastral Drosophila oocyte meiosis I spindle.

Oocyte meiotic spindles of many species are anastral and lack centrosomes to nucleate microtubules. Assembly of anastral spindles occurs by a pathway that differs from that of most mitotic spindles. Here we analyze assembly of the Drosophila oocyte meiosis I spindle and the role of the Nonclaret disjunctional (Ncd) motor in spindle assembly using wild-type and mutant Ncd fused to GFP. Unexpecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017